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Abstract

The Supersymmetry Les Houches Accord (SLHA) [1] provides a uni-
versal set of conventions for conveying spectral and decay information for
supersymmetry analysis problems in high energy physics. Here, we propose
extensions of the conventions of the first SLHA to include various gener-
alisations: the minimal supersymmetric standard model with violation of
CP, R-parity, and flavour, as well as the simplest next-to-minimal model.
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1 Introduction

Supersymmetric (SUSY) extensions of the Standard Model rank among the most promising
and well-explored scenarios for New Physics at the TeV scale. Given the long history of
supersymmetry and the number of people working in the field, several different conventions
for defining supersymmetric theories have been proposed over the years, many of which have
come into widespread use. At present, therefore, no unique set of conventions prevails. In
principle, this is not a problem. As long as everything is clearly and consistently defined,
a translation can always be made between two sets of conventions.

However, the proliferation of conventions does have some disadvantages. Results ob-
tained by different authors or computer codes are not always directly comparable. Hence,
if author/code A wishes to use the results of author/code B in a calculation, a consistency
check of all the relevant conventions and any necessary translations must first be made – a
tedious and error-prone task.

To deal with this problem, and to create a more transparent situation for non-experts,
the original SUSY Les Houches Accord (SLHA1) was proposed [1]. This accord uniquely
defines a set of conventions for supersymmetric models together with a common interface
between codes. The most essential fact is not what the conventions are in detail (they largely
resemble those of [2]), but that they are consistent and unambiguous, hence reducing the
problem of translating between conventions to a linear, rather than a factorial, dependence
on the number of codes involved. At present, these codes can be categorised roughly as
follows (see [3, 4] for a quick review and on-line repository):

• Spectrum calculators [5–8], which calculate the supersymmetric mass and coupling
spectrum, assuming some (given or derived) SUSY-breaking terms and a matching to
known data on the Standard Model parameters.

• Observables calculators [9–17]; packages which calculate one or more of the fol-
lowing: collider production cross sections (cross section calculators), decay partial
widths (decay packages), relic dark matter density (dark matter packages), and indi-
rect/precision observables, such as rare decay branching ratios or Higgs/electroweak
observables (constraint packages).

• Monte-Carlo event generators [18–26], which calculate cross sections through explicit
statistical simulation of high-energy particle collisions. By including resonance decays,
parton showering, hadronisation, and underlying-event effects, fully exclusive final
states can be studied, and, for instance, detector simulations interfaced.

• SUSY fitting programs [27,28] which fit model parameters to collider-type data.

At the time of writing, the SLHA1 has already, to a large extent, obliterated the need for
separately coded (and maintained and debugged) interfaces between many of these codes.
Moreover, it has provided users with input and output in a common format, which is more
readily comparable and transferable. Finally, the SLHA convention choices are also being
adapted for other tasks, such as the SPA project [29]. We believe, therefore, that the
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SLHA project has been useful, solving a problem that, for experts, is trivial but frequently
occurring and tedious to deal with, and which, for non-experts, is an unnecessary head-ache.

However, SLHA1 was designed exclusively with the MSSM with real parameters and
R-parity conservation in mind. Some recent public codes [6, 7, 17, 30–34] are either im-
plementing extensions to this base model or are anticipating such extensions. It therefore
seems prudent at this time to consider how to extend SLHA1 to deal with more general
supersymmetric theories. In particular, we will consider the violation of R-parity (RPV),
flavour violation, and CP-violating (CPV) phases in the minimal supersymmetric standard
model (MSSM). We will also consider next-to-minimal models which we shall collectively
label by the acronym NMSSM.

There is clearly some tension between the desirable goals of generality of the models,
ease of implementation in programs, and practicality for users. A completely general accord
would be useless in practice if it was so complicated that no one would implement it. We
have agreed on the following for SLHA2: for the MSSM, we will here restrict our attention
to either CPV or RPV, but not both. We shall work in the Super-CKM/PMNS basis
throughout (defined in section 4.1), except in the RPV case where input parameters are
supposed to be in the interaction basis. For the NMSSM, we define one catch-all model and
extend the SLHA1 mixing only to include the new states, with CP, R-parity, and flavour
still assumed conserved.

To make the interface independent of programming languages, compilers, platforms etc,
the SLHA1 is based on the transfer of three different ASCII files (or potentially a character
string containing identical ASCII information): one for model input, one for spectrum
calculator output, and one for decay calculator output. We believe that the advantage of
implementation independence outweighs the disadvantage of codes using SLHA1 having to
parse input. Indeed, there are tools to assist with this task [35–37].

Care was taken in SLHA1 to provide a framework for the MSSM that could easily
be extended to the cases listed above. The conventions and switches described here are
designed to be a superset of those of the original SLHA1 and so, unless explicitly mentioned
in the text, we will assume the conventions of the original SLHA1 [1] implicitly. For
instance, all dimensionful parameters quoted in the present paper are assumed to be in the
appropriate power of GeV, all angles are in radians, and the output formats for SLHA2 data
BLOCKs follow those of SLHA1. In a few cases it will be necessary to replace the original
conventions. This is clearly remarked upon in all places where it occurs, and the SLHA2
conventions then supersede the SLHA1 ones.

2 Extensions of SLHA1

Since its first publication, a few useful minor extensions to the SLHA1 have been identified.
These are collected here for reference and are independent of the more general SUSY models
discussed in subsequent sections.

Firstly, we introduce additional optional entries in the SLHA1 block EXTPAR to allow
for using either the A0 or H+ pole masses as input instead of the parameter m2

A(Minput)
defined in [1].

4



Secondly, to allow for different parameters to be defined at different scales (e.g., µ defined
at MEWSB, the remaining parameters defined at Minput) we introduce a new optional block
QEXTPAR which, if present, overrides the default MINPAR and EXTPAR scale choices for specific
parameters, as defined below.

While there is no obligation on codes to implement these extensions, we perceive it as
useful that the accord allows for them, enabling a wider range of input parameter sets to be
considered. The entries defined in EXTPAR and QEXTPAR in the SLHA2 are thus (repeating
unchanged EXTPAR entries for completeness):

BLOCK EXTPAR

Optional input parameters for non-minimal/non-universal models. This block may be en-
tirely absent from the input file, in which case a minimal type of the selected SUSY breaking
model will be used. When block EXTPAR is present, the starting point is still a minimal
model with parameters as given in MINPAR [1] but with each value present in EXTPAR re-
placing the minimal model value of that parameter, as applicable. If MINPAR is not present,
then all model parameters must be specified explicitly using EXTPAR. All scale-dependent
parameters are understood to be given in the DR scheme.

Input scale

0 : Minput. Input scale for EXTPAR entries in SUGRA, AMSB, and general
MSSM models. If absent, the GUT scale derived from gauge unification
will be used as input scale. Note that this parameter has no effect in
GMSB scenarios where the input scale by definition is identical to the
messenger scale, Mmess. A special case is when Q = MEWSB ≡

√
mt̃1mt̃2

is desired as input scale, since this scale is not known beforehand. This
choice can be invoked by giving the special value Minput = −1. To
define an alternative input scale for one or more specific parameters, see
QEXTPAR below.

Gaugino Masses

1 : M1(Minput). U(1)Y gaugino (Bino) mass.

2 : M2(Minput). SU(2)L gaugino (Wino) mass.

3 : M3(Minput). SU(3)C gaugino (gluino) mass.

Trilinear Couplings
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11 : At(Minput). Top trilinear coupling.

12 : Ab(Minput). Bottom trilinear coupling.

13 : Aτ (Minput). Tau trilinear coupling.

Higgs Parameters

— Only one of the parameter sets (m2
H1

, m2
H2

), (µ,m2
A), (µ,mA0), or (µ,mH+) should be

given, they merely represent different ways of specifying the same parameters.

21 : m2
H1

(Minput). Down type Higgs mass squared.

22 : m2
H2

(Minput). Up type Higgs mass squared.

23 : µ(Minput). µ parameter.

24 : m2
A(Minput). Tree–level pseudoscalar Higgs mass parameter squared, as

defined in [1].

25 : tan β(Minput). If present, this value of tan β overrides the one in MINPAR,
and the input scale is taken as Minput rather than mZ .

26 : mA0 . Pseudoscalar Higgs pole mass. May be given instead ofm2
A(Minput).

27 : mH+ . Charged Higgs pole mass. May be given instead of m2
A(Minput).

Sfermion Masses

31 : mẽL
(Minput). Left 1stgen. scalar lepton mass.

32 : mµ̃L
(Minput). Left 2ndgen. scalar lepton mass.

33 : mτ̃L(Minput). Left 3rdgen. scalar lepton mass.

34 : mẽR
(Minput). Right scalar electron mass.

35 : mµ̃R
(Minput). Right scalar muon mass.

36 : mτ̃R(Minput). Right scalar tau mass.

41 : mq̃1L
(Minput). Left 1stgen. scalar quark mass.

42 : mq̃2L
(Minput). Left 2ndgen. scalar quark mass.

43 : mq̃3L
(Minput). Left 3rdgen. scalar quark mass.

44 : mũR
(Minput). Right scalar up mass.

45 : mc̃R(Minput). Right scalar charm mass.

46 : mt̃R
(Minput). Right scalar top mass.
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47 : md̃R
(Minput). Right scalar down mass.

48 : ms̃R
(Minput). Right scalar strange mass.

49 : mb̃R
(Minput). Right scalar bottom mass.

Other Extensions

51 : N5,1 (GMSB only). U(1)Y messenger index.

52 : N5,2 (GMSB only). SU(2)L messenger index.

53 : N5,3 (GMSB only). SU(3)C messenger index.

BLOCK QEXTPAR

Optional alternative input scales for specific parameters. This block should normally be
absent, in which case the default input scale or Minput (see EXTPAR 0) will be used for all
parameters. We stress that most codes cannot be expected to allow for multiple arbitrary
scale choices, so the relevant manual and output should be carefully checked to make sure
the desired behaviour is obtained. Currently defined entries are:

1 : QM1 . Input scale for M1.

2 : QM2 . Input scale for M2.

3 : QM3 . Input scale for M3.

11 : QAu . Input scale for up-type squark trilinear couplings.

12 : QAd
. Input scale for down-type squark trilinear couplings.

13 : QA`
. Input scale for charged slepton trilinear couplings.

21 : Qm2
H1

. Input scale for m2
H1

.

22 : Qm2
H2

. Input scale for m2
H2

.

23 : Qµ. Input scale for µ.

24 : Qm2
A
. Input scale for m2

A, as defined in [1].

25 : Qtanβ. Input scale for tan β.

31 : Qm˜̀
L
. Input scale for all left-handed slepton mass terms.

34 : Qm˜̀
R
. Input scale for all right-handed slepton mass terms.

41 : Qmq̃L
. Input scale for all left-handed squark mass terms.

44 : QmũR
. Input scale for all right-handed up-type squark mass terms.
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47 : Qmd̃R
. Input scale for all right-handed down-type squark mass terms.

3 Model Selection

To define the general properties of the model, we propose to introduce global switches in
the SLHA1 model definition block MODSEL, as follows. Note that the switches defined here
are in addition to the ones in [1].

BLOCK MODSEL

Switches and options for model selection. The entries in this block should consist of an
index, identifying the particular switch in the listing below, followed by another integer or
real number, specifying the option or value chosen:

3 : (Default=0) Choice of particle content. Switches defined are:
0 : MSSM. This corresponds to SLHA1.

1 : NMSSM. As defined here.

4 : (Default=0) R-parity violation. Switches defined are:
0 : R-parity conserved. This corresponds to the SLHA1.

1 : R-parity violated. The blocks defined in section 4.2 should be
present.

5 : (Default=0) CP violation. Switches defined are:
0 : CP is conserved. No information even on the CKM phase is

used. This corresponds to the SLHA1.
1 : CP is violated, but only by the standard CKM phase. All

other phases assumed zero.
2 : CP is violated. Completely general CP phases allowed. Imag-

inary parts corresponding to the entries in the SLHA1 block
EXTPAR can be given in IMEXTPAR (together with the CKM
phase). In the case of additional SUSY flavour violation,
imaginary parts of the blocks defined in section 4.1 should
be given, again with the prefix IM, which supersede the cor-
responding entries in IMEXTPAR.
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6 : (Default=0) Flavour violation. Switches defined are:
0 : No (SUSY) flavour violation. This corresponds to the SLHA1.

1 : Quark flavour is violated. The blocks defined in section 4.1.3
should be present.

2 : Lepton flavour is violated. The blocks defined in section 4.1.3
should be present.

3 : Lepton and quark flavour is violated. The blocks defined in
section 4.1.3 should be present.

4 General MSSM

4.1 Flavour Violation

4.1.1 The quark sector and the super-CKM basis

Within the MSSM there are in general new sources of flavour violation arising from a
possible misalignment of quarks and squarks in flavour space. The severe experimental
constraints on flavour violation have no direct explanation in the structure of the uncon-
strained MSSM which leads to the well-known supersymmetric flavour problem.

The Super-CKM basis of the squarks [38] is very useful in this context because in
that basis only physically measurable parameters are present. In the Super-CKM basis the
quark mass matrix is diagonal and the squarks are rotated in parallel to their superpartners.
Actually, once the electroweak symmetry is broken, a rotation in flavour space

D o = VdD , U o = Vu U , D̄o = U∗d D̄ , Ū o = U∗u Ū , (1)

of all matter superfields in the (s)quark superpotential

WQ = εab
[
(YD)ij H

a
1Q

b o
i D̄

o
j + (YU)ij H

b
2Q

a o
i Ū

o
j

]
(2)

brings fermions from the interaction eigenstate basis {doL, uoL, doR, uoR} to their mass eigen-
state basis {dL, uL, dR, uR}:

doL = VddL , uoL = VuuL , doR = UddR , uoR = UuuR , (3)

and the scalar superpartners to the basis {d̃L, ũL, d̃R, ũR}. Through this rotation, the
Yukawa matrices YD and YU are reduced to their diagonal form ŶD and ŶU :

(ŶD)ii = (U †dY
T
D Vd)ii =

√
2
md i

v1

, (ŶU)ii = (U †uY
T
U Vu)ii =

√
2
mu i

v2

. (4)

Tree-level mixing terms among quarks of different generations are due to the misalignment
of Vd and Vu, expressed via the CKM matrix [39,40]

VCKM = V †
uVd , (5)
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which is proportional to the tree-level ūLidLjW
+, ūLidRjH

+, and ūRidLjH
+ couplings (i, j =

1, 2, 3). This is also true for the supersymmetric counterparts of these vertices, in the limit
of unbroken supersymmetry.

In the super-CKM basis the 6×6 mass matrices for the up-type and down-type squarks
are defined as

Lmass
q̃ = − Φ†

uM2
ũ Φu − Φ†

dM2
d̃
Φd , (6)

where Φu = (ũL, c̃L, t̃L, ũR, c̃R, t̃R)T and Φd = (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)T . We diagonalise the
squark mass matrices via 6×6 unitary matrices Ru,d, such that Ru,dM2

ũ,d̃
R†u,d are diagonal

matrices with increasing mass squared values. The flavour-mixed mass matrices read:

M2
ũ =

 VCKM m̂2
Q̃
V †

CKM +m2
u +DuLL

v2√
2
T̂ †U − µmu cot β

v2√
2
T̂U − µ∗mu cot β m̂2

ũ +m2
u +DuRR

 , (7)

M2
d̃

=

 m̂2
Q̃

+m2
d +DdLL

v1√
2
T̂ †D − µmd tan β

v1√
2
T̂D − µ∗md tan β m̂2

d̃
+m2

d +DdRR

 . (8)

In the equations above we introduced the 3× 3 matrices

m̂2
Q̃
≡ V †

d m
2
Q̃
Vd , m̂2

ũ ≡ U †um
2
ũ
T
Uu , m̂2

d̃
≡ U †d m

2
d̃

T
Ud , (9)

T̂U ≡ U †u T
T
U Vu , T̂D ≡ U †d T

T
D Vd , (10)

where the un-hatted mass matrices m2
Q,u,d and trilinear interaction matrices TU,D are given

in the electroweak basis of [1], in which the trilinear and bilinear soft SUSY-breaking
potentials V3 and V2 have the following forms:

V3 = εab
∑
ij

[
(TE)ijH

a
1 L̃

b
iL
ẽ∗jR + (TD)ijH

a
1 Q̃

b
iL
d̃∗jR + (TU)ijH

b
2Q̃

a
iL
ũ∗jR

]
+ h.c. , (11)

V2 = m2
H1
H∗

1 aH
a
1 +m2

H2
H∗

2 aH
a
2 + Q̃∗iLa(m

2
Q̃
)ijQ̃

a
jL

+ L̃∗iLa(m
2
L̃
)ijL̃

a
jL

+

ũiR(m2
ũ)ijũ

∗
jR

+ d̃iR(m2
d̃
)ij d̃

∗
jR

+ ẽiR(m2
ẽ)ij ẽ

∗
jR
− (m2

3εabH
a
1H

b
2 + h.c.) . (12)

The matrices mu,d are the diagonal up-type and down-type quark masses and Df LL,RR

are the D-terms given by:

Df LL,RR = cos 2β m2
Z

(
T 3
f −Qf sin2 θW

)
1l3 , (13)

which are also flavour diagonal. Note that the up-type and down-type squark mass matrices
in eqs. (7) and (8) cannot be simultaneously flavour-diagonal unless m̂2

Q̃
is flavour-universal

(i.e. proportional to the identity in flavour space).

4.1.2 The lepton sector and the super-PMNS basis

For the lepton sector, we adopt a super-PMNS basis. Neutrino oscillation data have pro-
vided a strong indication that neutrinos have masses and that there are flavour-changing
charged currents in the leptonic sector.
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One popular model to produce such effects is the see-saw mechanism, where right-handed
neutrinos have both Majorana masses as well as Yukawa couplings with the left-handed
leptons [41–43]. When the heavy neutrinos are integrated out of the effective field theory,
one is left with three light approximately left-handed neutrinos which are identified with
the ones observed experimentally. There are other models of neutrino masses, for example
involving SU(2) Higgs triplets, that, once the triplets have been integrated out, also lead
to effective Majorana masses for the neutrinos. Here, we cover all cases that lead to a low
energy effective field theory with Majorana neutrino masses and one sneutrino per family.
In terms of this low energy effective theory, the lepton mixing phenomenon is analogous to
the quark mixing case and so we adapt the conventions defined above to the leptonic case.

After electroweak symmetry breaking, the neutrino sector of the MSSM contains the
Lagrangian pieces (in 2–component notation)

L = −1

2
νoT (mν)ν

o + h.c., (14)

where mν is a 3 × 3 symmetric matrix. The interaction eigenstate basis neutrino fields νo

are related to the mass eigenstate ones ν by

νo = Vνν, (15)

reducing the mass matrix mν to its diagonal form m̂ν

(m̂ν)ii = (V T
ν mνVν)ii = mνi

. (16)

The charged lepton fields have a 3×3 Yukawa coupling matrix defined in the superpotential
piece [1]

WE = εab(YE)ijH
a
1L

bo
i Ē

o
j , (17)

where the charged lepton interaction eigenstates {eoL, eoR} are related to the mass eigenstates
{eL, eR, } by

eoL = VeeL and eoR = UeeR. (18)

The equivalent diagonalised charged lepton Yukawa matrix is

(ŶE)ii = (U †eY
T
E Ve)ii =

√
2
mei

v1

. (19)

Lepton mixing in the charged current interaction can then be characterised by the PMNS
matrix [44,45]

UPMNS = V †
e Vν , (20)

which is proportional to the tree-level ēLiνjW
− and ēRiνjH

− couplings (i, j = 1, 2, 3). This
is also true for the supersymmetric counterparts of these vertices, in the limit of unbroken
supersymmetry.

Rotating the interaction eigenstates of the sleptons identically to their leptonic coun-
terparts, we obtain the super-PMNS basis for the charged sleptons and the sneutrinos,
described by the Lagrangian1

Lmass
l̃

= −Φ†
eM2

ẽΦe − Φ†
νM2

ν̃Φν , (21)

1We neglect the possible term ΦT
ν M̂2

ν̃Φν . Neutrino mass constraints usually imply that it is highly
suppressed and has negligible effect on collider phenomenology.
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where Φν = (ν̃e, ν̃µ, ν̃τ )
T and Φe = (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R)T . M2

ẽ is the 6× 6 matrix

M2
ẽ =

 m̂2
L̃

+m2
e +DeLL

v1√
2
T̂ †E − µme tan β

v1√
2
T̂E − µ∗me tan β m̂2

ẽ +m2
e +DeRR

 . (22)

M2
ν̃ is the 3× 3 matrix

M2
ν̃ = U †PMNS m̂

2
L̃
UPMNS +DνLL, (23)

where DeLL and DνLL are given in eq. (13). In the equations above we introduced the 3×3
matrices

m̂2
L̃
≡ V †

e m
2
L̃
Ve , m̂2

ẽ ≡ U †e m
2
ẽ
T
Ue , (24)

T̂E ≡ U †e T
T
E Ve , (25)

where the un-hatted mass matrices m2
L,e and the trilinear interaction matrix TE are given

in the interaction basis of ref. [1] (see eq. (12 in this report). We diagonalise the charged
slepton and sneutrino mass matrices via the 6×6 and unitary 3×3 matrices Re,ν respectively.
Thus, Re,νM2

ẽ,ν̃R
†
e,ν are diagonal with increasing entries toward the bottom right of each

matrix.

4.1.3 Explicit proposal for SLHA2

As in the SLHA1 [1], for all running parameters in the output of the spectrum file, we
propose to use definitions in the modified dimensional reduction (DR) scheme. The basis
is the super-CKM/PMNS basis as defined above, that is the one in which the Yukawa
couplings of the SM fermions, given in the DR scheme, are diagonal. Note that the masses
and vacuum expectation values (VEVs) in eqs. (4), (16), and (19) must thus be the running
ones in the DR scheme.

The input for an explicit implementation in a spectrum calculator consists of the fol-
lowing information:

• By default, all input SUSY parameters are given at the scale Minput as defined in
the SLHA1 block EXTPAR (see above). In principle, advanced codes may also allow
for separate input scales for the sfermion mass matrices and trilinear couplings, via
the block QEXTPAR defined above, but we emphasize that this should be regarded as
non-standard.

• For the SM input parameters, we take the Particle Data Group (PDG) definition:
lepton masses are all on-shell. The light quark masses mu,d,s are given at 2 GeV, and

the heavy quark masses are given as mc(mc)
MS, mb(mb)

MS and mon−shell
t . The latter

two quantities are already in the SLHA1. The others are added to SMINPUTS in the
following manner (repeating the SLHA1 parameters for convenience):

1 : α−1
em(mZ)MS. Inverse electromagnetic coupling at the Z pole in the MS

scheme (with 5 active flavours).

2 : GF . Fermi constant (in units of GeV−2).
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3 : αs(mZ)MS. Strong coupling at the Z pole in the MS scheme (with 5
active flavours).

4 : mZ , pole mass.

5 : mb(mb)
MS. b quark running mass in the MS scheme.

6 : mt, pole mass.

7 : mτ , pole mass.

8 : mν3 , pole mass.

11 : me, pole mass.

12 : mν1 , pole mass.

13 : mµ, pole mass.

14 : mν2 , pole mass.

21 : md(2 GeV)MS. d quark running mass in the MS scheme.

22 : mu(2 GeV)MS. u quark running mass in the MS scheme.

23 : ms(2 GeV)MS. s quark running mass in the MS scheme.

24 : mc(mc)
MS. c quark running mass in the MS scheme.

The FORTRAN format is the same as that of SMINPUTS in SLHA1 [1].

• VCKM: the input CKM matrix in the Wolfenstein parameterization2 [46, 47] (exact
to all orders), in the block VCKMIN. Note that present CKM studies do not precisely
define a renormalisation scheme for this matrix since the electroweak effects that
renormalise it are highly suppressed and generally neglected. We therefore assume
that the CKM elements given by PDG (or by UTFit and CKMFitter, the main
collaborations that extract the CKM parameters) refer to SM MS quantities defined
at Q = mZ , to avoid any possible ambiguity. VCKMIN should have the following entries

1 : λ

2 : A

3 : ρ̄

4 : η̄

The FORTRAN format is the same as that of SMINPUTS above.

• UPMNS: the input PMNS matrix, in the block UPMNSIN. It should have the PDG
parameterisation in terms of rotation angles [47] (all in radians):

1 : θ̄12 (the solar angle)

2 : θ̄23 (the atmospheric mixing angle)

2We use the PDG definition [46,47] of the Wolfenstein parameters, rather than the original one [48].
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3 : θ̄13 (currently only has an upper bound)

4 : δ̄13 (the Dirac CP-violating phase)

5 : α1 (the first Majorana CP-violating phase)

6 : α2 (the second CP-violating Majorana phase)

The FORTRAN format is the same as that of SMINPUTS above. Majorana phases
have no effect on neutrino oscillations. However, they have physical consequences in
the case of, for example, ββ0ν decay of nuclei [47].

• (m̂2
Q̃
)DR
ij , (m̂2

ũ)
DR
ij , (m̂2

d̃
)DR
ij , (m̂2

L̃
)DR
ij , (m̂2

ẽ)
DR
ij : the squark and slepton soft SUSY-

breaking masses at the input scale in the super-CKM/PMNS basis, as defined above.
They will be given in the new blocks MSQ2IN, MSU2IN, MSD2IN, MSL2IN, MSE2IN, with
the FORTRAN format

(1x,I2,1x,I2,3x,1P,E16.8,0P,3x,’#’,1x,A).

where the first two integers in the format correspond to i and j and the double
precision number to the soft mass squared. Only the “upper triangle” of these matrices
should be given. If diagonal entries are present, these supersede the parameters in
the SLHA1 block EXTPAR.

• (T̂U)DR
ij , (T̂D)DR

ij , and (T̂E)DR
ij : the squark and slepton soft SUSY-breaking trilinear

couplings at the input scale in the super-CKM/PMNS basis. They will be given in the
new blocks TUIN, TDIN, TEIN, in the same format as the soft mass matrices above. If
diagonal entries are present these supersede the A parameters specified in the SLHA1
block EXTPAR [1].

For the output, the pole masses are given in block MASS as in SLHA1, and the DR and
mixing parameters as follows:

• (m̂2
Q̃
)DR
ij , (m̂2

ũ)
DR
ij , (m̂2

d̃
)DR
ij , (m̂2

L̃
)DR
ij , (m̂2

ẽ)
DR
ij : the squark and slepton soft SUSY-

breaking masses at scale Q in the super-CKM/PMNS basis. Will be given in the
new blocks MSQ2 Q=..., MSU2 Q=..., MSD2 Q=..., MSL2 Q=..., MSE2 Q=..., with
formats as the corresponding input blocks MSX2IN above.

• (T̂U)DR
ij , (T̂D)DR

ij , and (T̂E)DR
ij : The squark and slepton soft SUSY-breaking trilinear

couplings in the super-CKM/PMNS basis. Given in the new blocks TU Q=..., TD
Q=..., TE Q=..., which supersede the SLHA1 blocks AD, AU, and AE, see [1].

• (ŶU)DR
ii , (ŶD)DR

ii , (ŶE)DR
ii : the diagonal DR Yukawas in the super-CKM/PMNS basis,

with Ŷ defined by eqs. (4) and (19), at the scale Q. Given in the SLHA1 blocks YU

Q=..., YD Q=..., YE Q=..., see [1]. Note that although the SLHA1 blocks provide
for off-diagonal elements, only the diagonal ones will be relevant here, due to the
CKM/PMNS rotation.
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• The entries of the DR CKM matrix at the scale Q. The real and imaginary parts are
given in VCKM Q=... and IMVCKM Q=..., respectively. The format of the individual
entries is the same as for mixing matrices in the SLHA1. Note that the complete
matrix should be output, i.e., all entries should be included.

• The entries of the DR PMNS matrix at the scale Q. The real and imaginary parts
are given in UPMNS Q=... and IMUPMNS Q=..., respectively, with entries defined as
for the VCKM output blocks above.

• The squark and slepton masses and mixing matrices should be defined as in the
existing SLHA1, e.g. extending the t̃, b̃ and ẽ mixing matrices to the 6×6 case. More
specifically, the new blocks Ru =USQMIX Rd =DSQMIX, Re =SELMIX and the 3 × 3
matrix for Rν =SNUMIX specify the composition of the mass eigenstates in terms of
the super-CKM/PMNS basis states according to the following definitions:



1000001
1000003
1000005
2000001
2000003
2000005


=



d̃1

d̃2

d̃3

d̃4

d̃5

d̃6


mass−ordered

= DSQMIXij



d̃L
s̃L
b̃L
d̃R
s̃R
b̃R


super−CKM

, (26)



1000002
1000004
1000006
2000002
2000004
2000006


=



ũ1

ũ2

ũ3

ũ4

ũ5

ũ6


mass−ordered

= USQMIXij



ũL
c̃L
t̃L
ũR
c̃R
t̃R


super−CKM

. (27)



1000011
1000013
1000015
2000011
2000013
2000015


=



ẽ1
ẽ2
ẽ3
ẽ4
ẽ5
ẽ6


mass−ordered

= SELMIXij



ẽL
µ̃L
τ̃L
ẽR
µ̃R
τ̃R


super−PMNS

, (28)

 1000012
1000014
1000016

 =

 ν̃1

ν̃2

ν̃3


mass−ordered

= SNUMIXij

 ν̃e
ν̃µ
ν̃τ


super−PMNS

. (29)

Note! A potential for inconsistency arises if the masses and mixings are not calculated
in the same way, e.g. if radiatively corrected masses are used with tree-level mixing
matrices. In this case, it is possible that the radiative corrections to the masses shift
the mass ordering relative to the tree-level. This is especially relevant when near-
degenerate masses occur in the spectrum and/or when the radiative corrections are
large. In these cases, explicit care must be taken especially by the program writing
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the spectrum, but also by the one reading it, to properly arrange the rows in the order
of the mass spectrum actually used.

• Optionally, we allow for the possibility of the scalar and pseudoscalar components
of the sneutrinos to be treated separately. In this case, we define separate PDG codes
and mixing matrices for the scalar and pseudoscalar sneutrinos, as follows: 1000012

1000014
1000016

 =

 ν̃1S

ν̃2S

ν̃3S


mass−ordered

= SNSMIXij


√

2Re {ν̃e}√
2Re {ν̃µ}√
2Re {ν̃τ}


super−PMNS

, (30)

 1000017
1000018
1000019

 =

 ν̃1A

ν̃2A

ν̃3A


mass−ordered

= SNAMIXij


√

2Im {ν̃e}√
2Im {ν̃µ}√
2Im {ν̃τ}


super−PMNS

. (31)

If present, SNSMIX and SNAMIX supersede SNUMIX.

4.2 R-Parity Violation

We write the R-parity violating superpotential in the interaction basis as

WRPV = εab

[
1

2
λijkL

a
iL

b
jĒk + λ′ijkL

a
iQ

bx
j D̄kx − κiL

a
iH

b
2

]
+

1

2
λ′′ijkε

xyzŪixD̄jyD̄kz, (32)

where x, y, z = 1, . . . , 3 are fundamental SU(3)C indices and εxyz is the totally antisymmetric
tensor in 3 dimensions with ε123 = +1. In eq. (32), λijk, λ

′
ijk and κi break lepton number,

whereas λ′′ijk violate baryon number. To ensure proton stability, either lepton number
conservation or baryon number conservation is usually still assumed, resulting in either
λijk = λ′ijk = κi = 0 or λ′′ijk = 0 for all i, j, k = 1, 2, 3. Note, however, that we here only
define one generic set of conventions for R-parity violating MSSM models, regardless of
which individual couplings vanish.

The trilinear R-parity violating terms in the soft SUSY-breaking potential are

V3,RPV = εab

[
1

2
(T )ijkL̃

a
iLL̃

b
jLẽ

∗
kR + (T ′)ijkL̃

a
iLQ̃

b
jLd̃

∗
kR

]
+

1

2
(T ′′)ijkεxyzũ

x∗
iRd̃

y∗
jRd̃

z∗
kR + h.c. . (33)

Note that we do not factor out the λ couplings (e.g. as in Tijk/λijk ≡ Aλ,ijk) in order to
avoid potential problems with λijk = 0 but Tijk 6= 0. This usage is consistent with the
convention for the R-conserving sector elsewhere in this report.

The bilinear R-parity violating soft terms (all lepton number violating) are

VRPV2 = −εabDiL̃
a
iLH

b
2 + L̃†iaLm

2
L̃iH1

Ha
1 + h.c. . (34)
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When lepton number is not conserved the sneutrinos may acquire vacuum expectation
values (VEVs) 〈ν̃e,µ,τ 〉 ≡ ve,µ,τ/

√
2. The SLHA1 defined the VEV v, which at tree level is

equal to 2mZ/
√
g2 + g′2 ∼ 246 GeV; this is now generalised to

v =
√
v2

1 + v2
2 + v2

e + v2
µ + v2

τ . (35)

The addition of sneutrino VEVs allows for various different definitions of tan β, but we here
choose to keep the SLHA1 definition tan β = v2/v1.

4.2.1 Input/Output Blocks

For R-parity violating couplings, we use the interaction basis for both superpotential and
soft SUSY-breaking terms. This applies to both input and output. The naming convention
for input blocks is BLOCK RV#IN, where the ’#’ character represents the name of the relevant
output block given below (thus, for example, the “LLE” couplings λijk would be given in
BLOCK RVLAMLLEIN).

Default inputs for all R-parity violating couplings are zero. The inputs are given at scale
Minput, as described in SLHA1 (again, if no Minput is given, the GUT scale is assumed),
and follow the output format given below (with the omission of Q= ...). In addition, the
known fermion masses should be given in SMINPUTS as defined in section 4.1.3.

The dimensionless couplings λijk, λ
′
ijk, and λ′′ijk are given in BLOCK RVLAMLLE, RVLAMLQD,

RVLAMUDD Q= ... respectively. The output standard should correspond to the FORTRAN
format

(1x,I2,1x,I2,1x,I2,3x,1P,E16.8,0P,3x,’#’,1x,A) .

where the first three integers in the format correspond to i, j, and k and the double precision
number is the coupling.

Tijk, T
′
ijk, and T ′′ijk are given in BLOCK RVTLLE, RVTLQD, RVTUDD Q= ... in the same

format as for the λ couplings above.
The bilinear superpotential and soft SUSY-breaking terms κi, Di, and m2

L̃iH1
and the

sneutrino VEVs are given in BLOCK RVKAPPA, RVD, RVM2LH1, RVSNVEV Q= ... respec-
tively, in the format

(1x,I2,3x,1P,E16.8,0P,3x,’#’,1x,A) .

The input and output blocks for R-parity violating couplings are summarised in Tab. 1.
As for the R-conserving MSSM, the bilinear terms (both SUSY-breaking and SUSY-respect-
ing ones, including µ) and the VEVs are not independent parameters. They become related
by the condition of electroweak symmetry breaking. Thus, in the SLHA1, one had the
possibility either to specify m2

H1
and m2

H2
or µ and m2

A. This carries over to the RPV
case, where not all the parameters in the input blocks RV...IN in Tab. 1 can be given
simultaneously3. Specifically, of the last 4 blocks only 3 are independent. One block
is determined by minimising the Higgs-sneutrino potential. We do not here insist on a
particular choice for which of RVKAPPAIN, RVDIN, RVSNVEVIN, and RVM2LH1IN to leave out,
but leave it up to the spectrum calculators to accept one or more combinations.

3For a discussion of the independent parameters of the scalar potential with RPV, see, e.g., [49, 50].
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Input block Output block data
RVLAMLLEIN RVLAMLLE i j k λijk
RVLAMLQDIN RVLAMLQD i j k λ′ijk
RVLAMUDDIN RVLAMUDD i j k λ′′ijk
RVTLLEIN RVTLLE i j k Tijk
RVTLQDIN RVTLQD i j k T ′ijk
RVTUDDIN RVTUDD i j k T ′′ijk
NB: One of the following RV...IN blocks must be left out:

(which one up to user and RGE code)
RVKAPPAIN RVKAPPA i κi
RVDIN RVD i Di

RVSNVEVIN RVSNVEV i vi
RVM2LH1IN RVM2LH1 i m2

L̃iH1

Table 1: Summary of R-parity violating SLHA2 data blocks. All output parameters are
to be given in the Super-CKM/PMNS basis, but input parameters should be given in the
interaction eigenstate basis. Only 3 out of the last 4 blocks are independent. Which block
to leave out of the input is in principle up to the user, with the caveat that a given spectrum
calculator may not accept all combinations. See text for a precise definition of the format.

4.2.2 Particle Mixing

In general, the neutrinos mix with the neutralinos. This requires a change in the definition
of the 4 × 4 neutralino mixing matrix N to a 7 × 7 matrix. The Lagrangian contains the
(symmetric) neutrino/neutralino mass matrix as

Lmass
χ̃0 = −1

2
ψ̃0TMψ̃0ψ̃

0 + h.c. , (36)

in the basis of 2–component spinors ψ̃0 = (νe, νµ, ντ ,−ib̃,−iw̃3, h̃1, h̃2)
T . We define the

unitary 7× 7 neutrino/neutralino mixing matrix N (block RVNMIX), such that:

−1

2
ψ̃0TMψ̃0ψ̃

0 = −1

2
ψ̃0TNT︸ ︷︷ ︸
χ̃0T

N∗Mψ̃0N
†︸ ︷︷ ︸

diag(mχ̃0 )

Nψ̃0︸ ︷︷ ︸
χ̃0

, (37)

where the 7 (2–component) generalised neutrinos χ̃0 = (ν1, ..., ν7)
T are defined strictly

mass-ordered, i.e. with the 1st,2nd,3rd lightest corresponding to the mass entries for the
PDG codes 12, 14, and 16, and the four heaviest to the PDG codes 1000022, 1000023,
1000025, and 1000035 (see also appendix A).

Note! although these codes are normally associated with names that imply a specific
flavour content, such as code 12 being νe and so forth, it would be exceedingly complicated
to maintain such a correspondence in the context of completely general mixing, hence we
do not make any such association here. The flavour content of each state, i.e. of each PDG
number, is in general only defined by its corresponding entries in the mixing matrix RVNMIX.
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Note, however, that the flavour basis is ordered so as to reproduce the usual associations in
the trivial case (modulo the unknown flavour composition of the neutrino mass eigenstates).

In the limit of CP conservation, the default convention is that N be a real matrix and
one or more of the mass eigentstates may have an apparent negative mass. The minus sign
may be removed by phase transformations on χ̃0

i ≡ νi as explained in SLHA1 [1].
Charginos and charged leptons may also mix in the case of L-violation. In a similar

spirit to the neutralino mixing, we define

Lmass
χ̃+ = −1

2
ψ̃−TMψ̃+ψ̃

+ + h.c. , (38)

in the basis of 2–component spinors ψ̃+ = (e+, µ+, τ+,−iw̃+, h̃+
2 )T , ψ̃− = (e−, µ−, τ−,−iw̃−, h̃−1 )T

where w̃± = (w̃1 ∓ w̃2)/
√

2. Note that, in the limit of no RPV the lepton fields are mass
eigenstates.

We define the unitary 5 × 5 charged fermion mixing matrices U, V , blocks RVUMIX,

RVVMIX, such that:

−1

2
ψ̃−TMψ̃+ψ̃

+ = −1

2
ψ̃−TUT︸ ︷︷ ︸
χ̃−T

U∗Mψ̃+V
†︸ ︷︷ ︸

diag(mχ̃+ )

V ψ̃+︸ ︷︷ ︸
χ̃+

, (39)

where the generalised charged leptons χ̃+ ≡ (e+1 , e
+
2 , e

+
3 , e

+
4 , e

+
5 ) are defined as strictly mass

ordered, i.e. with the 3 lightest states corresponding to the PDG codes 11, 13, and 15,
and the two heaviest to the codes 1000024, 1000037. As for neutralino mixing, the flavour
content of each state is in no way implied by its PDG number, but is only defined by
its entries in RVUMIX and RVVMIX. Note, however, that the flavour basis is ordered so as
to reproduce the usual associations in the trivial case. For historical reasons, codes 11,
13, and 15 pertain to the negatively charged field while codes 1000024 and 1000037 per-
tain to the opposite charge. The components of χ̃+ in “PDG notation” would thus be
(-11,-13,-15,1000024,1000037). In the limit of CP conservation, U and V are chosen
to be real by default.

R-parity violation via lepton number violation implies that the sneutrinos can mix
with the Higgs bosons. In the limit of CP conservation the CP-even (-odd) Higgs bosons
mix with real (imaginary) parts of the sneutrinos. We write the neutral scalars as φ0 ≡√

2Re
{
(H0

1 , H
0
2 , ν̃e, ν̃µ, ν̃τ )

T
}
, with the mass term

L = −1

2
φ0TM2

φ0φ0 , (40)

where M2
φ0 is a 5×5 symmetric mass matrix. We define the orthogonal 5×5 mixing matrix

ℵ (block RVHMIX) by
−φ0TM2

φ0φ0 = −φ0TℵT︸ ︷︷ ︸
Φ0T

ℵM2
φ0ℵT︸ ︷︷ ︸

diag(m2
Φ0 )

ℵφ0︸︷︷︸
Φ0

, (41)

where Φ0 ≡ (h0
1, h

0
2, h

0
3, h

0
4, h

0
5) are the neutral scalar mass eigenstates in strictly increasing

mass order (that is, we use the label h for any neutral scalar mass eigenstate, regardless

19



of whether it is more “Higgs-like” or “sneutrino-like”). The states are numbered sequen-
tially by the PDG codes (25,35,1000012,1000014,1000016), regardless of flavour content.
The same convention will be followed below for the neutral pseudoscalars and the charged
scalars.

We write the neutral pseudo-scalars as φ̄0 ≡
√

2Im
{
(H0

1 , H
0
2 , ν̃e, ν̃µ, ν̃τ )

T
}
, with the mass

term

L = −1

2
φ̄0TM2

φ̄0φ̄
0 , (42)

where M2
φ̄0 is a 5× 5 symmetric mass matrix. We define the 4× 5 mixing matrix ℵ̄ (block

RVAMIX) by
−φ̄0TM2

φ̄0φ̄
0 = − φ̄0T ℵ̄T︸ ︷︷ ︸

Φ̄0T

ℵ̄M2
φ̄0ℵ̄T︸ ︷︷ ︸

diag(m2
Φ̄0 )

ℵ̄φ̄0︸︷︷︸
Φ̄0

, (43)

where Φ̄0 ≡ (A0
1, A

0
2, A

0
3, A

0
4) are the pseudoscalar mass eigenstates, again in strictly increas-

ing mass order. The states are numbered sequentially by the PDG codes (36,1000017,

1000018,1000019), regardless of flavour composition. The Goldstone boson G0 (the “5th
component”) has been explicitly left out and the 4 rows of ℵ̄ form a set of orthonormal
vectors.

If the blocks RVHMIX, RVAMIX are present, they supersede the SLHA1 ALPHA vari-
able/block.

The charged sleptons and charged Higgs bosons also mix in the 8 × 8 mass squared
matrix M2

φ± by a 7× 8 matrix C (block RVLMIX):

L = − (H−
1
∗
, H+

2 , ẽ
∗
Li
, ẽ∗Rj

)C†︸ ︷︷ ︸
Φ+

CM2
φ±C

†︸ ︷︷ ︸
diag(M2

Φ±
)

C


H−

1

H+
2
∗

ẽLk

ẽRl

 , (44)

where i, j, k, l ∈ {1, 2, 3}, α, β ∈ {1, . . . , 6} and Φ+ = Φ−† ≡ (h+
1 , h

+
2 , h

+
3 , h

+
4 , h

+
5 , h

+
6 , h

+
7 );

these states are numbered sequentially by the PDG codes (37,1000011,1000013,1000015,
2000011,2000013,2000015), regardless of flavour composition. The Goldstone boson G−

(the “8th component”) has been explicitly left out and the 7 rows of C form a set of
orthonormal vectors.

There may be contributions to down-squark mixing from R-parity violation. However,
this only mixes the six down-type squarks amongst themselves and so is identical to the
effects of flavour mixing. This is covered in section 4.1 (along with other forms of flavour
mixing).

4.3 CP Violation

When adding CP violation to the MSSM model parameters and mixing matrices4, the
SLHA1 blocks are understood to contain the real parts of the relevant parameters. The
imaginary parts should be provided with exactly the same format, in a separate block of the

4For a recent review, see, e.g., the CPNSH report [51].
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same name but prefaced by IM. The defaults for all imaginary parameters will be zero. Thus,
for example, BLOCK IMAU, IMAD, IMAE, Q= ... would describe the imaginary parts of the
trilinear soft SUSY-breaking scalar couplings. For input, BLOCK IMEXTPAR may be used to
provide the relevant imaginary parts of soft SUSY-breaking inputs. In cases where the
definitions of the current paper supersedes the SLHA1 input and output blocks, completely
equivalent statements apply.

One special case is the µ parameter. When the real part of µ is given in EXTPAR 23, the
imaginary part should be given in IMEXTPAR 23, as above. However, when |µ| is determined
by the conditions for electroweak symmetry breaking, only the phase ϕµ is taken as an input
parameter. In this case, SLHA2 generalizes the entry MINPAR 4 to contain the cosine of
the phase (as opposed to just sign(µ) in SLHA1), and we further introduce a new block
IMMINPAR whose entry 4 gives the sine of the phase, that is:

BLOCK MINPAR

4 : CP conserved: sign(µ).
CP violated: cosϕµ = Re {µ} /|µ|.

BLOCK IMMINPAR

4 : CP conserved: n/a.
CP violated: sinϕµ = Im {µ} /|µ|.

Note that cosϕµ coincides with sign(µ) in the CP-conserving cases.
When CP symmetry is broken, quantum corrections cause mixing between the CP-

even and CP-odd Higgs states. Writing the neutral scalar interaction eigenstates as φ0 ≡√
2(Re {H0

1} , Re {H0
2} , Im {H0

1} , Im {H0
2})T we define the 3× 4 mixing matrix S (blocks

CVHMIX and IMCVHMIX) by

−φ0TM2
φ0φ0 = −φ0TST︸ ︷︷ ︸

Φ0T

S∗M2
φ0S†︸ ︷︷ ︸

diag(m2
Φ0 )

Sφ0︸︷︷︸
Φ0

, (45)

where Φ0 ≡ (h0
1, h

0
2, h

0
3)
T are the mass eigenstates; these states are numbered sequentially

by the PDG codes (25,35,36), regardless of flavour composition. That is, even though
the PDG reserves code 36 for the CP-odd state, we do not maintain such a labelling here,
nor one that reduces to it. This means one does have to exercise some caution when taking
the CP conserving limit.

The matrix S thus gives the decomposition of the three physical mass eigenstates in
terms of the four interaction eigenstates, all in one go, with the Goldstone boson G0 ex-
plicitly projected out and the 3 rows of S forming a set of orthonormal vectors.

For comparison, in the literature, the projecting-out of the Goldstone boson is often done
as a separate step, by first performing a rotation by the angle β. (This is, for instance, the
prescription followed by CPsuperH [13,52]). In such an approach, our matrix S would be
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decomposed as:

Sφ0 =

 0
O3×3 0

0




1 0 0 0
0 1 0 0
0 0 − sin β cos β
0 0 cos β sin β

φ0

︸ ︷︷ ︸
(
√

2Re{H0
1},

√
2Re{H0

2},A0
tree,G

0
tree)

T

, (46)

where O3×3 gives the decomposition of the three physical mass eigenstates in terms of the
intermediate basis φ̃0 = (

√
2Re {H0

1} ,
√

2Re {H0
2} , A0

tree)
T , with A0

tree denoting the tree-
level MSSM non-Goldstone pseudoscalar mass eigenstate. Note that a simple rotation by
β suffices to translate between the two conventions, so whichever is the more practical can
easily be used.

A second alternative convention, e.g. adopted by FeynHiggs [34, 53], is to also rotate
the CP-even states by the angle α as part of the first step. In this case, our matrix S would
be decomposed as:

Sφ0 =

 0
R3×3 0

0



− sinα cosα 0 0
cosα sinα 0 0

0 0 − sin β cos β
0 0 cos β sin β

φ0

︸ ︷︷ ︸
(h0,H0,A0,G0)T

tree

, (47)

with α defined as the mixing angle in the CP-even Higgs sector at tree-level andR3×3 giving
the decomposition of the three physical mass eigenstates in terms of the intermediate basis
Φ̃0 = (h0, H0, A0)Ttree, that is in terms of the the tree-level mass eigenstates. In order to
translate between S and R3×3, the tree-level angle α would thus also be needed. This
should be given in the SLHA1 output BLOCK ALPHA:

BLOCK ALPHA

CP conserved: α; precise definition up to spectrum calculator, see SLHA1.
CP violated: αtree. Must be accompanied by the matrix S, as described
above, in the blocks CVHMIX and IMCVHMIX.

For the neutralino and chargino mixing matrices, the default convention in SLHA1
(and hence for the CP conserving case) is that they be real matrices. One or more mass
eigenvalues may then have an apparent negative sign, which can be removed by a phase
transformation on χ̃i as explained in SLHA1 [1]. When going to CPV, the reason for
introducing the negative-mass convention in the first place, namely maintaining the mixing
matrices strictly real, disappears. We therefore here take all masses real and positive, with
N , U , and V complex. This does lead to a nominal dissimilarity with SLHA1 in the limit
of vanishing CP violation, but we note that the explicit CPV switch in MODSEL can be used
to decide unambiguously which convention to follow.
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5 The Next-to-Minimal Supersymmetric SM

The first question to be addressed in defining universal conventions for the next-to-minimal
supersymmetric standard model is just what field content and which couplings this name
should apply to. The field content is already fairly well agreed upon; we shall here define
the next-to-minimal case as having exactly the field content of the MSSM with the addition
of one gauge-singlet chiral superfield. As to couplings and parameterisations, several defini-
tions exist in the literature [54–61]. Rather than adopting a particular one, or treating each
special case separately, below we choose instead to work at the most general level. Any
particular special case can then be obtained by setting different combinations of couplings
to zero. For the time being, however, we do specialise to the SLHA1-like case without CP
violation, R-parity violation, or flavour violation. Below, we shall use the acronym NMSSM
for this class of models, but we emphasise that we understand it to relate to field content
only, and not to the presence or absence of specific couplings.

5.1 Conventions

We write the most general CP conserving NMSSM superpotential as (extending the notation
of SLHA1):

WNMSSM = WMSSM − εabλSH
a
1H

b
2 +

1

3
κS3 + µ′S2 + ξFS , (48)

whereWMSSM is the MSSM superpotential, in the conventions of ref. [1, eq. (3)]. A non-zero
λ in combination with a VEV 〈S〉 of the singlet generates a contribution to the effective µ
term µeff = λ 〈S〉+ µ, where the MSSM µ term is normally assumed to be zero in NMSSM
constructions, yielding µeff = λ 〈S〉. The sign of the λ term in eq. (48) coincides with the
one in [16,33] where the Higgs doublet superfields appear in opposite order. The remaining
terms represent a general cubic potential for the singlet; κ is dimensionless, µ′ has dimension
of mass, and ξF has dimension of mass squared. The soft SUSY-breaking terms relevant to
the NMSSM are

Vsoft = V2,MSSM+V3,MSSM+m2
S|S|2+(−εabλAλSHa

1H
b
2+

1

3
κAκS

3+m′2
SS

2+ξSS+h.c.) , (49)

where Vi,MSSM are the MSSM soft terms defined in eq. (12) and we have introduced the
notation m′2

S ≡ B′µ′.
At tree level, there are thus 15 parameters (in addition to mZ which fixes the sum

of the squared Higgs VEVs) that are relevant for the Higgs sector of the R-parity and
CP-conserving NMSSM:

tanβ, µ, m2
H1
, m2

H2
, m2

3, λ, κ, Aλ, Aκ, µ
′, m′2

S , ξF , ξS, λ 〈S〉 , m2
S . (50)

The minimization of the effective potential imposes 3 conditions on these parameters, such
that only 12 of them can be considered independent. We leave it up to each spectrum
calculator to decide on which combinations to accept. For the purpose of this accord,
we note only that to specify a general model exactly 12 parameters from eq. (50) should
be provided in the input, including explicit zeroes for parameters desired “switched off”.
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However, since µ = m2
3 = µ′ = m′2

S = ξF = ξS = 0 in the majority of phenomenological
constructions, for convenience we also allow for a six-parameter specification in terms of
the reduced parameter list:

tanβ, m2
H1
, m2

H2
, λ, κ, Aλ, Aκ, λ 〈S〉 , m2

S . (51)

To summarize, in addition to mZ , the input to the accord should contain either 12
parameters from the list given in eq. (50), including zeroes for parameters not present in
the desired model, or it should contain 6 parameters from the list in eq. (51), in which case
the remaining 6 “non-standard” parameters, µ, m2

3, µ
′, m′2

S , ξF , and ξF , will be assumed
to be zero; in both cases the 3 unspecified parameters (as, e.g., m2

H1
, m2

H2
, and m2

S) are
assumed to be determined by the minimization of the effective potential.

5.2 Input/Output Blocks

Firstly, as described above in section 3, BLOCK MODSEL should contain the switch 3 with
value 1, corresponding to the choice of the NMSSM particle content.

Secondly, for the parameters that are also present in the MSSM, we re-use the corre-
sponding SLHA1 entries. That is, mZ should be given in SMINPUTS entry 4 and m2

H1
,m2

H2

can be given in the EXTPAR entries 21 and 22. tan β should either be given in MINPAR entry 3
(default) or EXTPAR entry 25 (user-defined input scale), as in SLHA1. If µ should be desired
non-zero, it can be given in EXTPAR entry 23. The corresponding soft parameter m2

3 can be
given in EXTPAR entry 24, in the form m2

3/(cos β sin β), see [1]. The notation m2
A that was

used for that parameter in the SLHA1 is no longer relevant in the NMSSM context, but by
keeping the definition in terms of m2

3 and cos β sin β unchanged, we maintain an economical
and straightforward correspondence between the two cases.

Further, new entries in BLOCK EXTPAR have been defined for the NMSSM specific input
parameters, as follows. As in the SLHA1, these parameters are all given at the common
scale Minput, which can either be left up to the spectrum calculator or given explicitly using
EXTPAR 0 (see section 2):

BLOCK EXTPAR

Input parameters specific to the NMSSM (in addition to the entries defined in section 2)

61 : λ. Superpotential trilinear Higgs SH2H1 coupling.

62 : κ. Superpotential cubic S coupling.

63 : Aλ. Soft trilinear Higgs SH2H1 coupling.

64 : Aκ. Soft cubic S coupling.

65 : λ 〈S〉. Vacuum expectation value of the singlet (scaled by λ).

66 : ξF . Superpotential linear S coupling.
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67 : ξS. Soft linear S coupling.

68 : µ′. Superpotential quadratic S coupling.

69 : m′2
S . Soft quadratic S coupling (sometimes denoted µ′B′).

70 : m2
S. Soft singlet mass squared.

Important note: only 12 of the parameters listed in eq. (50) should be given as input at
any one time (including explicit zeroes for parameters desired “switched off”), the remaining
ones being determined by the minimization of the effective potential. Which combinations
to accept is left up to the individual spectrum calculator programs. Alternatively, for
minimal models, 6 parameters of those listed in eq. (51) should be given.

For non-zero values, signs can be either positive or negative. As noted above, the
meaning of the already existing entries EXTPAR 23 and 24 (the MSSM µ parameter and
corresponding soft term) are maintained, which allows, in principle, for non-zero values for
both µ and 〈S〉. The reason for choosing λ 〈S〉 rather than 〈S〉 as input parameter 65 is
that it allows more easily to recover the MSSM limit λ, κ→ 0, 〈S〉 → ∞ with λ 〈S〉 fixed.

In the spectrum output, running NMSSM parameters corresponding to the EXTPAR

entries above can be given in the block NMSSMRUN Q=...:

BLOCK NMSSMRUN Q=...

Output parameters specific to the NMSSM, given in the DR scheme, at the scale Q. As in
the SLHA1, several of these blocks may be given simultaneously in the output, each then
corresponding to a specific scale, but at least one should always be present. See correspond-
ing entries in EXTPAR above for definitions.

1 : λ(Q)DR.

2 : κ(Q)DR.

3 : Aλ(Q)DR.

4 : Aκ(Q)DR.

5 : λ 〈S〉 (Q)DR.

6 : ξF (Q)DR.

7 : ξS(Q)DR.

8 : µ′(Q)DR.

9 : m′2
S (Q)DR.

10 : m2
S(Q)DR.
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5.3 Particle Mixing

In the CP-conserving NMSSM, the CP-even interaction eigenstates are φ0 ≡
√

2Re
{
(H0

1 , H
0
2 , S)T

}
.

We define the orthogonal 3× 3 mixing matrix S (block NMHMIX) by

−φ0TM2
φ0φ0 = −φ0TST︸ ︷︷ ︸

Φ0T

SM2
φ0ST︸ ︷︷ ︸

diag(m2
Φ0 )

Sφ0︸︷︷︸
Φ0

, (52)

where Φ0 ≡ (h0
1, h

0
2, h

0
3) are the mass eigenstates ordered in mass. These states are numbered

sequentially by the PDG codes (25,35,45). The format of BLOCK NMHMIX is the same as
for the mixing matrices in SLHA1.

In the MSSM limit (λ, κ→ 0, and parameters such that h0
3 ∼ Re {S}) the elements of

the first 2× 2 sub-matrix of Sij are related to the MSSM angle α as

S11 ∼ − sinα , S21 ∼ cosα ,

S12 ∼ cosα , S22 ∼ sinα .

In the CP-odd sector the interaction eigenstates are φ̄0 ≡
√

2Im
{
(H0

1 , H
0
2 , S)T

}
. We

define the 2× 3 mixing matrix P (block NMAMIX) by

−φ̄0TM2
φ̄0φ̄

0 = − φ̄0TP T︸ ︷︷ ︸
Φ̄0T

PM2
φ̄0P

T︸ ︷︷ ︸
diag(m2

Φ̄0 )

Pφ̄0︸ ︷︷ ︸
Φ̄0

, (53)

where Φ̄0 ≡ (A0
1, A

0
2) are the mass eigenstates ordered in mass. These states are numbered

sequentially by the PDG codes (36,46). The Goldstone boson G0 (the “3rd component”)
has been explicitly left out and the 2 rows of P form a set of orthonormal vectors. An
updated version NMSSMTools [33] will follow these conventions.

If NMHMIX, NMAMIX blocks are present, they supersede the SLHA1 ALPHA variable/block.
The neutralino sector of the NMSSM requires a change in the definition of the 4 × 4

neutralino mixing matrix N to a 5 × 5 matrix. The Lagrangian contains the (symmetric)
neutralino mass matrix as

Lmass
χ̃0 = −1

2
ψ̃0TMψ̃0ψ̃

0 + h.c. , (54)

in the basis of 2–component spinors ψ̃0 = (−ib̃, −iw̃3, h̃1, h̃2, s̃)
T . We define the unitary

5× 5 neutralino mixing matrix N (block NMNMIX), such that:

−1

2
ψ̃0TMψ̃0ψ̃

0 = −1

2
ψ̃0TNT︸ ︷︷ ︸
χ̃0T

N∗Mψ̃0N
†︸ ︷︷ ︸

diag(mχ̃0 )

Nψ̃0︸ ︷︷ ︸
χ̃0

, (55)

where the 5 (2–component) neutralinos χ̃i are defined such that the absolute value of their
masses increase with i. As in SLHA1, our convention is that N be a real matrix. One or
more mass eigenvalues may then have an apparent negative sign, which can be removed
by a phase transformation on χ̃i. The states are numbered sequentially by the PDG codes
(1000022,1000023,1000025,1000035,1000045).
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6 Conclusion and Outlook

At the time of writing of the SLHA1, a large number of computer codes already existed
which used MSSM spectrum and coupling information in one form or another. This had
several advantages: there was a high motivation from program authors to produce and
implement the accord accurately and quickly, and perhaps more importantly, the SLHA1
was tested “in anger” in diverse situations as it was being written.

We find ourselves in a slightly different situation in terms of the SLHA2. There are
currently few programs that utilise information in any of the NMSSM or CP-violating,
R-parity violating, or non-trivial flavour violating MSSM scenarios. Thus we do not have
the benefit of comprehensive simultaneous testing of the proposed accord and the strong
motivation that was present for implementation and writing of the original one. What
we do have are the lessons learned in connection with the SLHA1 itself, and also several
almost-finished codes which are now awaiting the finalization of SLHA2 in order to publish
their first official releases. Concrete tests involving several of these were thus possible in
connection with this writeup.

We have adhered to the principle of backward compatibility wherever feasible. We
therefore expect that the conventions and agreements reached within this paper constitute
a practical solution that will prove useful for SUSY particle phenomenology in the future.
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A PDG Codes and Extensions

The existing PDG nomenclature for (s)particle names is based on the limit of the MSSM
in which CP, R-parity, and flavour are conserved. Several of the mass eigenstates are
therefore labeled to indicate definite R, CP, and/or flavour quantum numbers. When the
corresponding symmetries are broken, such a labeling becomes misleading. Throughout
this paper we have adopted the convention of assigning a common label to all states which
carry identical conserved quantum numbers in the given model. We then re-use the existing
PDG codes for those states, arranged in strictly increasing mass order.

This implies that, while the PDG numbers remain unaltered, their labels change, de-
pending on which scenario is considered. The PDG codes and labels are discussed in detail
in the individual sections on flavour violation, R-parity violation, CP violation, and the
NMSSM. In the tables below, we summarize the PDG numbers and suggested labels rele-
vant to each distinct scenario, for squarks (Tab. 2), charged colour-singlet fermions (Tab. 3),
neutral colour-singlet fermions (Tab. 4), charged colour-singlet scalars (Tab. 5), and neutral
colour-singlet scalars (Tab. 6), respectively. Note that these extensions are not officially
endorsed by the PDG at this time. Codes for other particles [47, chp. 33].

Scalar Quarks

FLV No Yes No No Yes Yes

RPV No No Yes No Yes No

CPV No No No Yes No Yes

N
M

S
S
M

1000001 d̃L d̃1 d̃1 d̃L d̃1 d̃1 d̃L
1000002 ũL ũ1 ũ1 ũL ũ1 ũ1 ũL
1000003 s̃L d̃2 d̃2 s̃L d̃2 d̃2 s̃L
1000004 c̃L ũ2 ũ2 c̃L ũ2 ũ2 c̃L
1000005 b̃1 d̃3 d̃3 b̃1 d̃3 d̃3 b̃1
1000006 t̃1 ũ3 ũ3 t̃1 ũ3 ũ3 t̃1
2000001 d̃R d̃4 d̃4 d̃R d̃4 d̃4 d̃L
2000002 ũR ũ4 ũ4 ũR ũ4 ũ4 ũL
2000003 s̃R d̃5 d̃5 s̃R d̃5 d̃5 s̃L
2000004 c̃R ũ5 ũ5 c̃R ũ5 ũ5 c̃L
2000005 b̃2 d̃6 d̃6 b̃2 d̃6 d̃6 b̃2
2000006 t̃2 ũ6 ũ6 t̃2 ũ6 ũ6 t̃2

Table 2: Particle codes and corresponding labels for squarks. The labels in the first column
correspond to the current PDG nomenclature.
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Charged Leptons and Charginos

FLV No Yes No No Yes Yes

RPV No No Yes No Yes No

CPV No No No Yes No Yes

N
M

S
S
M

11 e− e− e−1 e− e−1 e− e−

13 µ− µ− e−2 µ− e−2 µ− µ−

15 τ− τ− e−3 τ− e−3 τ− τ−

1000024 χ̃+
1 χ̃+

1 e+4 χ̃+
1 e+4 χ̃+

1 χ̃+
1

1000037 χ̃+
2 χ̃+

2 e+5 χ̃+
2 e+5 χ̃+

2 χ̃+
2

Table 3: Particle codes and corresponding labels for charged colour-singlet fermions. The
labels in the first column correspond to the current PDG nomenclature. Note that, for
historical reasons, codes 11, 13, and 15 pertain to negatively charged fields while codes
1000024 and 1000037 pertain to the opposite charge.

Neutrinos and Neutralinos

FLV No Yes No No Yes Yes

RPV No No Yes No Yes No

CPV No No No Yes No Yes

N
M

S
S
M

12 νe ν1 ν1 νe ν1 ν1 νe
14 νµ ν2 ν2 νµ ν2 ν2 νµ
16 ντ ν3 ν3 ντ ν3 ν3 ντ

1000022 χ̃0
1 χ̃0

1 ν4 χ̃0
1 ν4 χ̃0

1 χ̃0
1

1000023 χ̃0
2 χ̃0

2 ν5 χ̃0
2 ν5 χ̃0

2 χ̃0
2

1000025 χ̃0
3 χ̃0

3 ν6 χ̃0
3 ν6 χ̃0

3 χ̃0
3

1000035 χ̃0
4 χ̃0

4 ν7 χ̃0
4 ν7 χ̃0

4 χ̃0
4

1000045 - - - - - - χ̃0
5

Table 4: Particle codes and corresponding labels for neutral colour-singlet fermions. The
labels in the first column correspond to the current PDG nomenclature.
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Charged Higgs Boson and Charged Scalar Leptons

FLV No Yes No No Yes Yes

RPV No No Yes No Yes No

CPV No No No Yes No Yes

N
M

S
S
M

37 H+ H+ h+
1 H+ h+

1 H+ H+

1000011 ẽ+L ẽ+1 h+
2 ẽ+L h+

2 ẽ+1 ẽ+L
1000013 µ̃+

L ẽ+2 h+
3 µ̃+

L h+
3 ẽ+2 µ̃+

L

1000015 τ̃+
1 ẽ+3 h+

4 τ̃+
1 h+

4 ẽ+3 τ̃+
1

2000011 ẽ+R ẽ+4 h+
5 ẽ+R h+

5 ẽ+4 ẽ+R
2000013 µ̃+

R ẽ+5 h+
6 µ̃+

R h+
6 ẽ+5 µ̃+

R

2000015 τ̃+
2 ẽ+6 h+

7 τ̃+
2 h+

7 ẽ+6 τ̃+
2

Table 5: Particle codes and corresponding labels for charged colour-singlet scalars. The
labels in the first column correspond to the current PDG nomenclature.

Neutral Higgs Bosons and Scalar Neutrinos

FLV No Yes No No Yes Yes

RPV No No Yes No Yes No

CPV No No No Yes No Yes

N
M

S
S
M

25 h0 h0 h0
1 h0

1 h0
1 h0

1 h0
1

35 H0 H0 h0
2 h0

2 h0
2 h0

2 h0
2

36 A0 A0 A0
1 h0

3 A0
1 h0

3 A0
1

45 - - - - - - h0
3

46 - - - - - - A0
2

1000012 ν̃eL
ν̃1 (ν̃1S) h0

3 ν̃eL
h0

3 ν̃1 ν̃eL

1000014 ν̃µL
ν̃2 (ν̃2S) h0

4 ν̃µL
h0

4 ν̃2 ν̃µL

1000016 ν̃τL ν̃3 (ν̃3S) h0
5 ν̃τL h0

5 ν̃3 ν̃τL
1000017 - (ν̃1A) A0

2 - A0
2 - -

1000018 - (ν̃2A) A0
3 - A0

3 - -
1000019 - (ν̃3A) A0

4 - A0
4 - -

Table 6: Particle codes and corresponding labels for neutral colour-singlet scalars. The la-
bels in the first column correspond to the current PDG nomenclature. The labels in paren-
thesis denote the optional separation of sneutrinos into separate scalar and pseudoscalar
components.
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